On the Ulam stability of the Cauchy-Jensen equation and the additive-quadratic equation
نویسندگان
چکیده
منابع مشابه
Non-Archimedean stability of Cauchy-Jensen Type functional equation
In this paper we investigate the generalized Hyers-Ulamstability of the following Cauchy-Jensen type functional equation$$QBig(frac{x+y}{2}+zBig)+QBig(frac{x+z}{2}+yBig)+QBig(frac{z+y}{2}+xBig)=2[Q(x)+Q(y)+Q(z)]$$ in non-Archimedean spaces
متن کاملstability of the quadratic functional equation
In the present paper a solution of the generalizedquadratic functional equation$$f(kx+ y)+f(kx+sigma(y))=2k^{2}f(x)+2f(y),phantom{+} x,yin{E}$$ isgiven where $sigma$ is an involution of the normed space $E$ and$k$ is a fixed positive integer. Furthermore we investigate theHyers-Ulam-Rassias stability of the functional equation. TheHyers-Ulam stability on unbounded domains is also studied.Applic...
متن کاملOn Ulam's Type Stability of the Cauchy Additive Equation
We prove a general result on Ulam's type stability of the functional equation f(x + y) = f(x) + f(y), in the class of functions mapping a commutative group into a commutative group. As a consequence, we deduce from it some hyperstability outcomes. Moreover, we also show how to use that result to improve some earlier stability estimations given by Isaac and Rassias.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Nonlinear Sciences and Applications
سال: 2015
ISSN: 2008-1901
DOI: 10.22436/jnsa.008.05.23